

ZPressor: Bottleneck-Aware Compression for Scalable Feed-Forward 3DGS

Weijie Wang¹⊠ Donny Y. Chen²⊠

Zeyu Zhang²

Duochao Shi¹

Akide Liu²

Bohan Zhuang¹

^{IZ} Corresponding authors. ²Monash University

Weijie Wang (王伟杰)

College of Computer Science and Technology, Zhejiang University

2025/6/16

About Me

➢ Weijie Wang (王伟杰)

Final-Year Undergraduate Student @ ZJU

25' PhD. Student @ ZIP Lab, ZJU, supervised by Prof. Bohan Zhuang

Research Interest:

- Efficient Feed-Forward Models: <u>ZPressor</u>, <u>PM-Loss</u>, <u>WonderTurbo</u>
- Dynamic Reconstruction: <u>Street Gaussians</u>

Webpage: https://lhmd.top

Email: wangweijie@zju.edu.cn

Wechat: zju-lhmd

Background

Inputs: 2D observed views

3D Reconstruction

Novel View Synthesis

https://kaldir.vc.in.tum.de/scannetpp/benchmark/nvs Fast3R: Towards 3D Reconstruction of 1000+ Images in One Forward Pass. CVPR 2025.

3D Representations

There is no canonical representation in 3D. We chose 3DGS since it performs the best for NVS in general.

3D Gaussian Splatting for Real-Time Radiance Field Rendering. ACM Transactions on Graphics. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. ECCV 2020.

3D Gaussian Splatting (3DGS)

ZPressor – Weijie Wang 6

3D Gaussian Splatting for Real-Time Radiance Field Rendering. ACM Transactions on Graphics.

Limitations of Per-Scene based 3DGS

- 1. Time: requires applying the optimization process to *each scene* (20+ mins)
- 2. Space: requires additional permanent storage for the 3D representation of *each scene* (10+ M)

The bicycle scene takes: $\sim 50 \text{ mins}$, $\sim 100 \text{ M}$

Note: Here , we refer to the inria's version of 3DGS;

NOT those improved models such as sparse-view 3DGS, fast-training 3DGS, 3DGS compression, etc.

3D Gaussian Splatting for Real-Time Radiance Field Rendering. ACM Transactions on Graphics.

Pipeline of Feed-Forward 3DGS

Almost all feed-forward 3DGS networks use this paradigm.

Example: MVSplat

$$f_{\boldsymbol{\theta}}: \{(\boldsymbol{I}^{i}, \boldsymbol{P}^{i})\}_{i=1}^{K} \mapsto \{(\boldsymbol{\mu}_{j}, \alpha_{j}, \boldsymbol{\Sigma}_{j}, \boldsymbol{c}_{j})\}_{j=1}^{H \times W \times K}$$

Inputs: Multi-view images, with corresponding camera poses

Outputs: Pixel-align 3D Gaussians for the scenes

NVS: Render the predicted 3DGS from novel viewpoints

Mvsplat: Efficient 3d gaussian splatting from sparse multi-view images. ECCV 2024.

Per-Scene VS Feed-Forward

Challenges in Feed-Forward 3DGS

We need denser views to **provide more information**, but at the same time not be influenced by **redundancy**. The scalability of feed-forward 3DGS is fundamentally constrained by the **limited capacity** of their encoders.

Fast3R: Towards 3D Reconstruction of 1000+ Images in One Forward Pass. CVPR 2025.

ZPressor: Bottleneck-Aware Compression for Scalable Feed-Forward 3DGS

Information Bottleneck Theory

Deep Variational Information Bottleneck. ICLR 2017.

Variational Information Bottleneck for Effective Low-Resource Fine-Tuning. ICLR 2021.

Information Flow in FF 3DGS

Bottleneck-Aware Compression

$$\min_{\mathcal{Z}} IB = \underbrace{\beta I(\mathcal{X}, \mathcal{Z})}_{\text{Compression Score}} - \underbrace{I(\mathcal{Z}, \mathcal{Y})}_{\text{Prediction Score}}$$

K 🖉 🐹 MONASH

- 1. Compression Score: Minimizing I(\mathcal{X} , \mathcal{Z})
- **2.** Prediction Score: Maximizing $I(\mathcal{Z}, \mathcal{Y})$

Note: The mutual information (MI) of two random variables $I(\cdot, \cdot)$ is a measure of the mutual dependence between the two variables.

Zpressor: Overview

ZPressor – Weijie Wang 16

Algorithm 2 Farthest Point Sampling for Anchor View Selection

```
Input: Set of view camera positions \mathcal{T} = \{\mathbf{T}_1, \mathbf{T}_2, ..., \mathbf{T}_K\}, Number of anchor views N
Output: Indices of the selected anchor views S = {T_{a_1}, T_{a_2}, ..., T_{a_n}}
   Initialize the set of anchor view indices \mathcal{S} \leftarrow \emptyset
   Randomly select a random anchor view \mathbf{T}_{a_1} \in \mathcal{T}, where \mathbf{T}_{a_1} \sim \text{Uniform}(\mathcal{T})
   Add \mathbf{T}_{a_1} to \mathcal{S}: \mathcal{S} \leftarrow \{\mathbf{T}_{a_1}\}
   for j \leftarrow 2 to N do
        Initialize a dictionary to store minimum distances D \leftarrow \{\}
        for k \leftarrow 1 to K do
              if k \notin S then
                   Calculate the minimum distance d_k \leftarrow \min_{i \in S} \|\mathbf{T}_k - \mathbf{T}_i\|_2
                    Store the distance: D[k] \leftarrow d_k
              end if
        end for
        Find the view position T_{a_i} with the maximum minimum distance: T_{a_i} \leftarrow \arg \max_{k \notin S} D[k]
        Add a_j to \mathcal{S}: \mathcal{S} \leftarrow \mathcal{S} \cup \{T_{a_i}\}
   end for
   return S
```

Support-to-anchor Assignment

View Groups after Step 1 and Step 2

- Once anchor views are selected, each support view is assigned to its nearest anchor based on **camera position**.
- This grouping ensures that support views, which capture complementary scene details, are paired with **the most spatially relevant** anchor views.
- This pairing thereby ensures the effectiveness of information fusion.
- Formally, the cluster assignment to the i-th anchor view can be denoted as:

$$\mathcal{C}_{i} = \{f(\mathbf{T}) \in \mathcal{X}_{\text{support}} \mid \|\mathbf{T} - \mathbf{T}_{a_{i}}\| \leq \|\mathbf{T} - \mathbf{T}_{a_{j}}\|, \forall j \neq i\}$$

Views Information Fusion

× H layer

Design of Feature Fusion Networks. Feature Fusion by Cross-Attention, Self-Attention and MLP.

Views	Methods	PSNR ↑	SSIM ↑	LPIPS↓
36 views	DepthSplat	19.23	0.666	0.286
	DepthSplat + ZPressor	23.88 +4.65	0.815 +0.149	0.150- 0.136
24 views	DepthSplat	20.38	0.711	0.253
	DepthSplat + ZPressor	24.26 +3.88	0.820+0.109	0.147- 0.106
16 views	DepthSplat	22.07	0.773	0.195
	DepthSplat + ZPressor	24.25 +2.18	0.819 +0.046	0.147 -0.047
12 views	DepthSplat	23.32	0.807	0.162
	DepthSplat + ZPressor	24.30 +0.97	0.821 +0.014	0.146 -0.017

Results on RE10K with MVSplat

Views	Methods	PSNR ↑	SSIM ↑	LPIPS↓
36 views	pixelSplat	OOM	OOM	OOM
	pixelSplat + ZPressor	26.59	0.849	0.225
	MVSplat	24.19	0.851	0.155
	MVSplat + ZPressor	27.34+3.15	0.893 +0.042	0.113-0.042
24 views	pixelSplat	OOM	OOM	OOM
	pixelSplat + ZPressor	26.72	0.851	0.223
	MVSplat	25.00	0.871	0.137
	MVSplat + ZPressor	27.49+2.49	0.895 +0.024	0.111 -0.026
16 views	pixelSplat	OOM	OOM	OOM
	pixelSplat + ZPressor	26.81	0.853	0.221
	MVSplat	25.86	0.888	0.120
	MVSplat + ZPressor	27.60+1.74	0.896+0.008	0.110 -0.010
8 views	pixelSplat	26.19	0.852	0.215
	pixelSplat + ZPressor	26.86+0.67	0.854 +0.002	0.219+0.004
	MVSplat	26.94	0.902	0.107
	MVSplat + ZPressor	27.72+0.78	0.897-0.005	0.109+0.002

Qualitative comparison

Visualization on DL3DV (36 Input Views)

a62c330f5403e2e41a82a74c4e865b705c5706843b992fae2fe2e538b122d984

63798f5c6fbfcb4eb686268248b8ecbc8d87d920b2bcce967eeaedfd3b3b6d82

Analysis of model efficiency

Figure 5: Efficiency analysis. We report the number of Gaussians (K), inference time (ms) and peak memory (GB) of DepthSplat [12] and DepthSplat with ZPressor.

Analysis of the Information Bottleneck

Figure 6: Analysis of the bottleneck constraint. We compare the performance of ZPressor in different scale of scene coverage.

Limitations

Inputs (~500 views)

DepthSplat + ZPressor

ZPressor exhibits limitations when processing scenarios with an extremely high density of input views.

More Information

ZIP Lab. We are currently

recruiting research

assistants for 3D LM topic

Weijie Wang's homepage. Actively seeking cooperation

ZPressor – Weijie Wang 26

THANK YOU

Weijie Wang (王伟杰)

College of Computer Science and Technology, Zhejiang University

2025/6/16

Cross Dataset Generalization on ACID

Views	Methods	PSNR↑	SSIM ↑	LPIPS↓
36 views	pixelSplat	OOM	OOM	OOM
	pixelSplat + Ours	27.78	0.823	0.238
	MVSplat	24.89	0.812	0.179
	MVSplat + Ours	28.16+3.27	0.853+0.041	0.145 -0.034
24 views	pixelSplat	OOM	OOM	OOM
	pixelSplat + Ours	27.91	0.825	0.235
	MVSplat	25.46	0.829	0.167
	MVSplat + Ours	28.33+2.87	0.856 +0.027	0.142 -0.025
16 views	pixelSplat	OOM	OOM	OOM
	pixelSplat + Ours	27.97	0.826	0.234
	MVSplat	26.08	0.844	0.156
	MVSplat + Ours	28.42+2.34	0.858+0.014	0.141 -0.015
8 views	pixelSplat	26.69	0.807	0.260
	pixelSplat + Ours	28.05+1.36	0.828+0.021	0.234 -0.026
	MVSplat	27.89	0.864	0.140
	MVSplat + Ours	28.60+0.71	0.860-0.004	0.140 -0.000

Table 4: Ablation study of our method with DepthSplat [12] on the DL3DV dataset [17]. Models are evaluated by rendering eight novel views using 12 input views.

Methods	PSNR ↑	SSIM↑	LPIPS↓	Time (s)	Peak Memory (GB)
DepthSplat + ZPressor	24.30	0.821	0.146	0.184	3.80
w/o multi-blocks	24.18	0.817	0.149	0.140	3.79
w/o self-attention	23.85	0.810	0.156	0.183	3.80
DepthSplat	23.32	0.808	0.162	0.260	6.80

Note: All ablation models and training settings will be available on our GitHub project.